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Viewpoint Matters: Dynamically Optimizing Viewpoints with Masked
Autoencoder for Visual Manipulation

Pengfei Yi!, Yifan Han!, J unyan Li', Litao Liu2, and Wenzhao Lian!

Abstract— Robotic manipulation continues to be a complex
challenge, with imitation learning (IL) offering an effective way
for robots to learn tasks from expert demonstrations. Current
IL methods typically rely on fixed camera setups—either multi-
camera systems, which may introduce redundant or noisy data,
or single-camera systems, which suffer from limited viewpoints,
constraining task performance. Inspired by human active
perception, where humans dynamically adjust their viewpoint
to capture the most relevant and least noisy information, we
propose MAE-Select, a novel framework for active viewpoint
selection in single-camera robotic systems. MAE-Select fully
leverages pre-trained multi-view masked autoencoder represen-
tations and dynamically selects the next most informative view-
point at each time chunk without requiring labeled viewpoints.
This plug-and-play approach enhances learning efficiency and
task performance. Extensive experiments demonstrate that
MAE-Select improves the capabilities of single-camera systems
and, in some cases, even surpasses multi-camera setups. Project
will be available at https://sites.google.com/view/mae-select.

I. INTRODUCTION

Robotic manipulation is a core challenge in robotics,
critical to applications ranging from industrial automation
to healthcare. Imitation Learning (IL) [1], [2], [3], [4], [5]
has become a leading approach for enabling robots to learn
complex tasks through expert demonstrations. Recently, ad-
vances in deep generative models [6], [7], such as variational
autoencoders (VAEs) [8] and diffusion models [9], have em-
powered IL by allowing robots to process high-dimensional
sensory inputs, such as images, leading to promising results
in robotic manipulation [10], [11], [12], [13].

However, most current IL methods rely on fixed camera
setups, either single or multiple cameras, which pose sig-
nificant limitations. In fixed single-camera setups [14], [15],
though practical and cost-effective, robots face challenges
due to the limited field of view, which may obstruct critical
parts of the environment or objects, negatively impacting
task performance. Multi-camera setups, while designed to
provide more comprehensive scene coverage, introduce their
own complexities: the abundance of redundant or irrelevant
information can overwhelm learning algorithms and decrease
efficiency. As shown in Sec.IV, these passive static multi-
view setups do not always provide the most task-relevant
information, leading to suboptimal decision-making.

In contrast, humans dynamically adjust their viewpoints
while performing tasks. By actively moving our head and
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neck, we naturally seek the most informative, least noisy
perspectives that are most relevant to the task at hand.
Inspired by this human capability, we propose shifting from
passive, static perception to active perception, where the
viewpoint is dynamically adjusted throughout the task to
optimize information intake. In a practical robotic setting,
this could be embodied by a humanoid robot moving its neck
and head to capture the most task-relevant views in real-time.
In this paper, we focus on the feasibility of active viewpoint
selection for robotic manipulation as an initial exploration
along this direction.

To this end, we introduce MAE-Select, a framework
designed to actively select optimal viewpoints for single-
camera robotic setups. MAE-Select first fully utilizes the
powerful pre-trained representations from the multi-view
masked autoencoders (MAEs) [16], [17], leveraging its
complete encoder-decoder architecture to obtain multi-view
representations. Unlike prior works that focus on fixed view-
points [18], MAE-Select dynamically predicts the next better
viewpoint based on the current chunk of visual and action
information. Crucially, this viewpoint selection is learned
solely through imitation learning, requiring no manual labels
for optimal views. Moreover, this innovative mechanism
is a plug-and-play solution, making it easy to integrate
into various existing setups, and demonstrates significant
potential in advancing single-camera robotic manipulation.

Our key contributions are as follows:

+« We propose MAE-Select, a novel plug-and-play view-
point selection mechanism that dynamically selects the
next optimal viewpoint at each time chunk.

o We present an imitation learning framework that fully
utilizes pre-trained representations from a multi-view
masked autoencoder for manipulation.

« We demonstrate through experiments across various sce-
narios and tasks that MAE-Select significantly enhances
manipulation efficiency and accuracy in single-camera
setups, even outperforming multi-camera systems in
certain tasks.

II. RELATED WORK
A. Imitation learning for Manipulation

Imitation learning, which enables agents to learn tasks by
observing and mimicking expert actions, has been widely
applied to manipulation tasks [19], [20], [21], [22], [2],
[23], [24]. Behavioral cloning [1] is a foundational approach
that treats imitation as a supervised learning problem, map-
ping observations directly to actions. Recently, significant
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Fig. 1.

Tllustration of our proposed method. Left depicts the pre-training stage of the multi-view masked autoencoder with joint embeddings. Middle

illustrates the training process of our framework using imitation learning. Right demonstrates how the framework operates during inference.

advancements have been made in imitation learning (IL) for
robotic manipulation. With the advent of deep learning, there
has been a surge in methods leveraging computer vision
techniques to extract information from images [25], [26],
[27], [11], [10], virtual reality (VR) [28], and 3D point
clouds [29], [30]. For instance, ACT [11] introduced action
chunking with transformers, enhancing both accuracy and
efficiency. Diffusion Policy [10] represents a robot’s visuo-
motor policy as a conditional denoising diffusion process,
enabling stable learning of complex manipulation tasks from
expert demonstrations. However, most of these methods rely
on fixed camera setups. In this work, we focus on the critical
role of viewpoints in manipulation and aim to unlock the full
potential of single-camera applications to achieve superior
results.

B. Unsupervised representation learning

Unsupervised representation learning [31], [32], [33] aims
to learn useful representations or features from data without
using any labeled examples. A leading method in this area
is the Masked Autoencoder (MAE) [16], which operates
by randomly masking portions of the input and training
the model to reconstruct the missing parts. This technique
has shown outstanding performance, particularly in computer
vision tasks [34], [35], [17]. In the field of robotics, several
approaches [36], [37], [18] have applied MAE to enhance im-
age representation, leading to improvements in manipulation.
Among these, MV-MWM [18] utilizes MAE with multi-view
data to enhance visual robotic manipulation, achieving no-
table performance in single-view control scenarios. However,
its focus is primarily on enhancing the performance of a fixed
single viewpoint using auxiliary data from other viewpoints,
without exploring alternative viewpoints.

III. METHOD

We present MAE-Select, a plug-and-play framework that
selects the next better viewpoint for visual robotic manipu-

lation. It learns multi-view representations through masked
autoencoder and fully utilizes the whole encoder-decoder
structure of the autoencoder for the action decoder and
viewpoint selector in contrast to the previous methods [36],
[37], [18]. We first introduce how to learn multi-view rep-
resentations in Sec.III-A. Then, we describe how to fully
utilize the pre-trained masked autoencoder for manipulation
in Sec.III-B. Finally, we present the way to learn better
view point choices in conjunction with imitation learning
in Sec.IlI-C. The overview of our method is shown in Fig.1.

Let O; = {o,',...,0{'} be an image set from multiple
viewpoints, s; be the joint positions of the robot and a;, 7 =
{a;,...,a,y7_1} be the action chunking with the window
size of T at timestep #, where v; represents a viewpoint
respectively and the length of O; represents the number of
available viewpoints.

A. Multi-View Representation

Our aim is to learn multi-view representations and recon-
struct other viewpoints from the one that is important to
select the next better viewpoint. The core idea is to pretrain a
multi-view masked autoencoder with view-masking and joint
embeddings to recover the randomly masked viewpoints and
image patches.

Random Masking. The vanilla masked autoencoder [16]
masks random image pixel patches. As pixel patch masking
makes it difficult for the model to learn fine-grained details,
we randomly mask the convolutional features in a similar
manner to [37], [18]. Specifically, given an image o;’ €
R224x226x3 it is first fed into 4 convolutional layers. The
output from the final convolutional layer produces feature
map 6," € RI**¥14xdin and it is flattened into &, € R196*din,
which then undergoes the masking process. The observations
from each viewpoint are separately processed with shared
parameters. This approach allows the model to focus on
learning more nuanced and detailed features, as the convolu-
tional features retain more spatial information compared to
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raw pixel patches. Given a mask ratio of m, a proportion m
of the feature map 0;' is randomly selected for masking. We
also adopt view-masking [18] that randomly masks whole
viewpoints to make the masked autoencoder to learn the
cross relationship among these viewpoints.

Multi-View Masked Autoencoder. For each viewpoint,
we add fixed 2D sin-cos position embeddings to the features
to encode spatial information. Additionally, we incorporate
learnable 1D parameters representing each viewpoint to the
features. Initially, the unmasked features from all viewpoints
are processed through a series of vision transformer (ViT)
[38] layers to generate mixed features. To assist in the
reconstruction, joint state information with learnable position
embeddings is incorporated. Specifically, a set of mask
tokens is concatenated with the encoded features and joint
features. The decoder then processes these through ViT
layers and linearly projects them into pixel patch predictions
and state predictions. The process can be presented as,

Masking: A" ~ Pk (| {0{"}v,ev,m)
ViT Encoder: 2" = f4 (") (D
ViT Decoder: {6, }yev, 8 = 8¢ (2",51)

We train the model to reconstruct both pixels and states, opti-
mizing the model parameters ¢ by minimizing the prediction
error,

L™ (¢) = MSE(0]",0") + L1(S;,51) (2)
B. Imitation Learning

Unlike previous methods [36], [37], [18], we utilize the
whole encoder-decoder of the masked autoencoder, exclud-
ing the linear head at the end, to produce multi-view features
and it can be integrated into various types of action decoders.
By default, we employ the transformer-based diffusion policy
[10] as our decoder due to its robustness in handling complex
tasks. With a dataset 2 = {O,,s,,a,}i\': o..1,» Where T,, repre-
sents the maximum length of time steps and N represents the
total number of trajectories, our objective is to learn a policy
7o (arr|s:,0;) through imitation learning, ensuring that the
generated actions d; 7 closely match those provided in the
expert demonstrations. Specifically, given the observations
O; and s;, we have a 50% probability of not masking O;.
Otherwise, one viewpoint is randomly retained, while the
others are masked, as O} = o]. Then they are fed into the
pre-trained masked autoencoder,

G =8o(fo(O"),51) A3)

We also use a Denoising Diffusion Probabilistic Model
(DDPM) to approximate the conditional distribution p(a; 7 |
C;). During training, following [10], we randomly select a
denoising iteration k from the uniform distribution U(1,K).
For this iteration, we sample a random noise ek with an
appropriate variance. The policy predicts the noise € and is
updated using the loss function,

Laction(e) _ Sm00l/’lL1ﬁ:1,0(£k7 Ty (C“a?,'r + {;‘k,k)) 4)

To ensure that the pre-trained masked autoencoder main-
tains the predictive power of the image while enhancing
feature extraction, we update the whole model by combining
the reconstruction loss with the action loss,

LIL _ Laction (0) + (XLmae((P) (5)

C. Next Better Viewpoint Selection

Although we have the ground truth of actions for training
the action decoder, obtaining the ground truth for the optimal
viewpoint is challenging. This difficulty arises from the fact
that the optimal viewpoint depends on the task and context,
making it impractical to define a “correct” viewpoint. Given
this, we take an approach inspired by recurrent neural
networks (RNNs) [39], [40] to iteratively refine viewpoint
selection during imitation learning as shown in Fig.1. We
randomly initialize the viewpoint for the first time chunk,
and the selector model outputs the better viewpoint for the
second time chunk. The objective is to minimize the action
prediction error of the second time chunk. Using gradient
descent, we update the viewpoint selection network to refine
its ability to choose optimal viewpoints implicitly.

Specifically, let &, and Z;.r represent two consecutive
time chunks, with O, being the observations at the current
time chunk and O, 7 the observations at a future time chunk.
We start by assuming an initial random viewpoint, denoted as
O = of, where v refers to one of the candidate viewpoints.
These observations are then passed through the multi-view
representation models as described in Sec.III-A, extracting
multi-view observation features. Together with the actions
ground truth a; 7, these features are input into the viewpoint
selection model, which consists of two layers of transformer
encoder TF(-) with a [CLS] token and SoftMax activation.
The model then outputs the next, better viewpoint probability
pt"ﬁ_T for the subsequent time chunk,

piir =SoftMax(TF(C,a;7)) (6)

Once the probability distribution p;, ; is obtained, the next
viewpoint v, 7 for the subsequent time chunk Z; 7 is chosen
based on the highest probability, i.e.,

Vet = argméixp};r (7)

The observation for the next time chunk is updated as

=0, According to Sec.Ill-B, the action loss for
the next time chunk Lj‘f;"”, is computed. The loss for the
viewpoint selection model is then defined as:

L = Y (plyr L") ®)

v

Since p} T is obtained using a SoftMax activation, L"’:ew
is equal to L{{"". Thus, the viewpoint selection loss L""
directly ties the quality of the selected viewpoint to the
corresponding action loss, encouraging the model to optimize

viewpoints that minimize future action errors.
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Fig. 2. The viewpoint settings for various robotic tasks, showcasing the viewpoints used to evaluate performance across different simulation and real-world

scenarios.

During inference, we randomly set the initial viewpoint
and use the initial state as the action with initial observations
to predict the optimal viewpoint for the first time chunk.
For subsequent chunks, the actions generated by the action
decoder are fed into the viewpoint selection module to
determine the optimal viewpoint for the next time chunk.

IV. EXPERIMENTS

We evaluate MAE-Select across 3 challenging scenarios
and 8 demanding tasks in simulation, including simulations
in ACT [11], RLBench [41], and our designed robot in
MuJoCo [42], along with three real-world tasks.

A. Tasks

The 11 tasks cover various scenarios, providing a com-
prehensive evaluation of our method. The viewpoint settings
are shown in Fig.2. For simulations in ACT [11], we focus
on the Bimanual Insertion task, where the robot’s arms pick
up a socket and a peg for a mid-air insertion. In RLBench
[41], we select four varied tasks as follows. Phone On Base:
The robot needs to pick up and place a phone onto its base.
Pick Up Cup: The robot needs to grasp and lift a specific
cup within several cups. Unplug Charger: the robot is tasked
with removing a charger from a socket, involving careful
manipulation to avoid damaging delicate components. Take
Umbrella Out Of Stand: This task requires the robot to pick
up a small umbrella. We also design three customized tasks
for our robot in MuJoCo [42]. Put Box In Cabinet: The robot
needs to pick up a box and place it inside a cabinet, requiring
precise spatial reasoning. Put Box In Bin: In this task, the
robot places a box into a bin, testing its ability to interact with
constrained spaces. Put Box In Bin with Disturbance: Similar
to the previous task, but the robot must select a specific block

from multiple blocks. For real-world evaluation, we designed
three tasks similar to the simulation setups but involving
real objects: Put Bitter Melon In Cabinet, Put Eggplant To
Bowl, and Put Eggplant To Bowl with Disturbance. Our robot
consists of a 7DOF Ufactory xarm 7 robotic arm and a
parallel-jaw gripper; our camera setup includes two statically
mounted (top and left) and one wrist-mounted Realsense
D435 cameras.

B. Implementation

We base our implementation on the architecture of the
diffusion policy [10]. The action space corresponds to the
joint angles of the robot arm, while the image observations
have a resolution of 224 x 224 with a patch size of 16.
Our masked autoencoder utilizes a 12-layer ViT [38] for
encoder and an 8-layer ViT for decoder, with an embedding
dimension of 512. During pretraining, we use a batch size
of 128 over 100 epochs. For RLBench and real-world tasks,
the time chunk size is set to 20, with a total of 600 epochs.
For other tasks, the time chunk size is 100, with 1,000
epochs in total. In the case of MAE-Select, the batch size
is set to 32, and the training undergoes two stages, where
only the imitation component is trained during the first
half of the epochs, and both imitation and view selection
components are trained in the second half. For Diffusion
Policy, the batch size is set to 64, and all other parameters
follow those outlined in the original work [10]. For each
method, we evaluate the best-performing checkpoints from
the last three evaluated at 100-intervals, with 50 environment
initializations in simulation. All models were trained and
tested on NVIDIA RTX 4090 GPUs.
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RESULTS OF COMPARISON EXPERIMENT. * REPRESENTS WITH DISTURBANCE. BOLD AND UNDERLINED FONTS MEAN THE BEST AND SECOND-BEST

TABLE I

RESULTS.

Bimanual Insertion

Put Box In Cabinet

Put Box In Bin

Put Box In Bin*

Method
Top Front  Both Top Left  Both Top Left Both  Top Left  Both
Diffusion Policy [10]  42% 44%  50% 16% 18%  26%  80% 64% 84% 38%  30%  44%
MAE-Diffusion 48% 50% 54%  42% 2%  46%  84% 8%  92% 52% 46%  60%
MAE-Select 52% 50% 88% 58%
Method Phone On Base Pick Up Cup Take Umbrella Unplug Charger
Front Wrist Both  Front Wrist Both  Front Wrist Both  Top  Wrist Both
Diffusion Policy [10]  82% 56%  78%  60% 40%  64%  58% 36% 54%  44%  30% 34%
MAE-Diffusion 86% 70% 8%  68% 66%  62%  56% 2% 64% 46%  34% 52%
MAE-Select 92% 70 % 60% 58%
Method Put Eggplant To Bowl Put Eggplant To Bowl* Put Bitter Melon In Cabinet
Top Wrist Both Top Wrist Both Top Left Both
Diffusion Policy [10]  2/10 1/10 5/10 2/10 0/10 3/10  0/10 1/10 2/10
MAE-Diffusion 4/10 4/10 7/10 4/10 3/10 6/10 2/10 4/10 4/10
MAE-Select 6/10 6/10 5/10
TABLE I

RESULTS OF PLUG-AND-PLAY EXPERIMENTS.

Bimanual Insertion Phone On Base

Method
Top  Front Both Front Wrist Both
ACT [11] 14%  26%  34%  56% 50%  58%
MAE-ACT 28% 30% 42%  60% 58%  66%
MAE-Select 36% 70%
TABLE III

ABLATION STUDIES ON MAE ENCODER AND DECODER UTILIZATION.

Put Box In Cabinet Phone On Base

Method
Top Left Both  Front Wrist Both
MAE-Encoder  20%  28% 34%  76% 56%  80%
MAE-Diffusion 42% 42% 46% 86% 70% 88%

C. Single-camera control setup

We explore a single-camera control setup where the system
is trained using multiple camera views but operates using a
single camera during deployment. At each time chunk, the
camera is positioned at one of the training viewpoints. This
setup is particularly practical for scenarios where multiple
cameras can be leveraged during training, while the robot
must function with only one camera in real-world appli-
cations. Unlike MV-MWM [18], our approach allows the
camera to move across different viewpoints during operation.

D. Results

We compare the performance of MAE-Select with two
other methods: Diffusion Policy [10] and a variant of Dif-
fusion Policy that incorporates MAE, referred to as MAE-
Diffusion, as described in Sec.III-B, across different types
of tasks and viewpoints. In the case of Diffusion Policy,

the training and testing viewpoints are identical. For MAE-
Diffusion, however, all available viewpoints are utilized
during training.

As demonstrated in Tab.I, MAE-Select consistently out-
performs other fixed single-camera setups in both simulation
and real-world experiments. For example, in the Put Box
In Cabinet task, MAE-Select improves performance by 8%
compared to the best fixed single-camera method and by 32%
compared to previous work. Its advantage lies in its ability
to intelligently select the most informative viewpoints, which
allows the system to make the most of limited visual input,
resulting in optimized task completion.

Furthermore, an interesting pattern emerges in some tasks:
for certain methods, the performance with a single viewpoint
can surpass that of a multi-camera setup. For example, in the
Unplug Charger task with Diffusion Policy, using only the
top view (44%) outperforms using both views (34%). This
counterintuitive result may stem from the added complexity
of processing multiple cameras, which can introduce noise or
misalignment issues, complicating the learning process. By
focusing on the optimal viewpoint, MAE-Select avoids these
challenges, enabling more efficient and effective task execu-
tion. Consequently, MAE-Select remains highly competitive
when compared to multi-camera setups, even outperforming
them in several tasks.

E. Plug-and-play

Our method emphasizes flexibility in viewpoint selection,
making it independent of the specific action decoder used.
To highlight this versatility, we also evaluate our approach
in combination with ACT [11], an alternative action decoder.
The results in Tab.Il show that our viewpoint selection
method can be seamlessly integrated with different action
decoders, further showcasing its adaptability and plug-and-
play capability in various system architectures.
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Fig. 3.

Visualization of the selected viewpoints in our experiments, showcasing both simulation and real-world environments. Each row represents the

whole procedure of a specific task, indicating the necessity of selecting different viewpoints throughout the task.

F. Ablation study

We conduct an ablation study to isolate the contributions
of fully utilizing the entire encoder-decoder structure of
the masked autoencoder in our approach. Specifically, we
compare the performance of our method, which leverages
both the encoder and decoder components, against a ver-
sion that uses only the encoder of the masked autoencoder
[37], [18]. The results in Tab.IIl demonstrate that utilizing
the full encoder-decoder structure significantly improves
performance, particularly in scenarios that require nuanced
visual understanding from partial or occluded viewpoints.
This highlights the value of the decoder in refining the
system’s ability to interpret and act based on incomplete or
masked information, contributing to better generalization and
adaptability in both simulated and real-world tasks.

G. Visualization

To better understand the behavior of the system under
the single-camera control setup, we provide a comprehensive
set of visualizations from deployment phases. As shown in
Fig.3, MAE-Select selects optimal viewpoints based on con-
textual information, demonstrating its capacity for intelligent
decision-making. In particular, the visualizations highlight
how MAE-Select prioritizes critical areas of interest while
disregarding less relevant regions.

V. CONCLUSIONS AND FUTURE WORK

In this work, we present MAE-Select, a novel frame-
work that optimizes viewpoints for single-camera systems
in robotic manipulation. By fully leveraging pre-trained
representations from multi-view masked autoencoders and
dynamically selecting the next most informative viewpoints
at each time chunk without manual annotations, MAE-Select
significantly enhances the efficiency of robotic manipulation,
addressing the limitations of both multi-camera and single-
view setups. Our experiments demonstrate that this plug-and-
play mechanism effectively improves performance, and even
surpasses multi-camera systems in certain cases. Despite its
effectiveness, one major limitation of MAE-Select is that
it optimizes over discrete viewpoints rather than continuous
ones, which reduces the system’s flexibility in dynamic envi-
ronments. Future improvements could involve the integration
of techniques like Neural Radiance Fields (NeRF) [43] or
3D Gaussian processes [44], enabling continuous viewpoint
optimization.
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